
23. Yu. A. Plavins, M. E. Lauva, Sh. I. Krys~ko, et al., Magno Gidrodin., No. 2, 130-132 
(1985). 

24. A. Yu. Chukhrov, Magn. Gidrodin. ,  No. 2, 61-66 (1985). 
25. E. Blfims, Some Problems of Heat and Mass Transfer in Magnetic Fluids, Preprint LAFI-066, 

Salaspils (1984). 
26. A. Yu. Chukhrov, Magn. Gidrodin., No. 4, 43-48 (1984). 
27. V. A. Miroshnikov and R. Ya. Ozols, Tenth Riga Conference on Magnetic Hydrodynamics, 

Vol. I, Riga (1981), pp. 215-216. 
28. V. A. Miroshnikov, "Processes of phoresis in magnetic and electric fields," Author's 

Abstract of Candidate's Thesis, Physics and Mathematics, Dolgoprudnyi (1981). 
29. A. Yuo Chukhrov, Materials of the III All-Union School-Seminar on Magnetic Liquids, Mos- 

cow (1983), pp. 268-272. 
30. Do Fletcher and M. R. Parker, J. Appl. Phys., 57, No. i, 4289-4291 (1985). 
31. E. Ya. Blfims and A. Ya. Rimsha, Eleventh Riga Conference on Magnetic Hydrodynamics. III. 

Magnetic Liquids, Salaspils (1984), pp. 7-10. 
32. A. Yu. Chukhrov, Eleventh Riga Conference on Magnetic Hydrodynamics. III. Magnetiz 

Liquids, Salaspils (1984), pp. 11-14. 
33. E. Blfuns, J. Magn. Magnet. Mater., 65, Nos. 2/3, 343-346 (1987). 
34. A. Yu. Chukhrov, Magn. Gidrodin., No. 3, 31-36 (1986). 
35. M. M. Maiorov and A. O. Tsebers, Magn. Gidrodin., No. 4, 36-40 (1983). 
36. A. O. Tsebers and Ao Yu. Chukhrov, Magn. Gidrodin., No. 3, 3-8 (1986). 

TEMPERATURE FIELDS AND STRESSES IN BODIES WITH DISCONTINUOUS PARAMETERS 

Yu. M. Kolyano UDC 539.3 

Bodies with discontinuous parameters are utilized extensively as structural eleme~ts 
in different areas of modern engineering. Among them are thermally sensitive, piecew~se- 
homogeneous and multistage bodies; bodies with piecewise-constant coefficients of heat eli- 
mination from their surfaces, with cutouts, holes, gaps, of finite dimensions. The physico- 
mechanical characteristics of multistage structural elements can be described as a si~gle 
whole for the whole body by using asymmetric unit functions, while bodies with a cont<nu- 
ous inhomogeneity and bodies with temperature-dependent properties (thermally sensitive 
bodies) are approximated by using these functions. The desired functions (the temperature 
field t, the stress tensor components oij , and the displacement vector u i) for bodies with 
cutouts, gaps, holes, of finite dimensions can be continued into the domain enclosing the 
cutout, gap, hole; in an infinite domain in one dimension, respectively. For the bodies 
under consideration this permits writing integrodifferential (generalized problem) o~ dif- 
ferential equations (classical problem) of heat conduction and thermoelasticity with dis- 
continuous and singular coefficients. For bodies with discontinuous coefficients of ~eat 
elimination, the boundary conditions can be written with discontinuous coefficients. In- 
vestigations executed in this scientific direction are generalized in the monographs [1-4] 
and analyzed in [5]. Here we examine the analysis of further investigations performed in 
the area of the heat conduction and thermoelasticity of bodies with discontinuous parsmeters 
by using the apparatus of generalized functions. 

Let us consider an anisotropic inhomogeneous body occupying a domain V and having the 
temperature t o in the undeformed and unstressed state. A system of differential equations 
is obtained in [6] for the generalized interconnected dynamic problem of the thermoe]asti- 
city of an anisotropic inhomogeneous body under the assumption that the relaxation tithe 
of the heat flux does not change as a function of the coordinates, which is valid foc 
metals [7]. If the relaxation time ~r(M) depends on the coordinates, i.e., the generalized 
heat-conduction law has the form 

l q ~ = - - ~ i ( M )  O (MCV, i, ] =  l, 2, 3), (1)  

the heat-conduction equation for an anisotropic inhomogeneous body will then be written for 
t / z = o  = 0 as  
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.[ [~ (M, % ~) ;~i (M)(t (M, ~)).~1, id~ = to~iy (M) e u + co (M) "t - -  w,, (2 )  
0 

where 

~iJ (M) = c~m (/vI) ~ z  (M), 

exp( ~ - z  ) 
O %(M) , I = I + ~ ( M )  O, (M, ,, ~) = ,T (M) ' 

The equa t ions  of motion in d i sp lacements  have the  form [7] 

[ci.ikt (M) u~,zl.., = 9(M) u i -[- [ffd (M) Old, (3) 
where O = t - to; ~r(M) = Xr(Xl, x 2, x3). 

The integrodifferential equation (2) and the differential equations (3) form a complete 
system of equations for a generalized interconnected dynamic problem of thermoelasticity 
of an anisotropic inhomogeneous body. Needed in addition to the equations presented for the 
formulation of the thermoelasticity problem are the boundary and initial conditions. For 
the classical thermoelasticity problem they are presented in [4]. For the generalized 
problem the boundary condition for heat transfer of the third kind is written in such a 
manner 

ni .t" fl (P' T, ~) ~ i  (P)(t (P, ~)),j d~ + o~ it (P, I) - -  tg (P, T)] = 0, P 6 S. (4)  
o 

The boundary conditions of the second and third kind result from (4) for astS = q, m s = 
O; m s + =, respectively. 

The equations of the generalized unconnected dynamical problem of thermoelasticity in 
cylindrical and spherical coordinates have the form 

o -&r ~" (M, "c, ar j + r --ar + 

+r_ 2 a,,[fl~(M,~,~)at ] 
0r ~ + 

~, a t  iI 
+ az 

a [2,~ (M) e~,. + ~, (M) e - -  [~ (M) O] + SA w ~ [1~ (M) e~] + A~-~r  

O 
+ 2A~ ~ [I �9 (M) e~] = 9 (M) u - -  H~ (rq~z, uvw), 

where 
[} (M) ---- ~t (M)[3L (M) + 2Ix (M)], 

~ ( M , , ,  ~) L,(M) exp(. {--~ ) 
�9 ~(M) ,~(M) ' 

AT A, l, A~ 1 , Hr a,.~--%~ , H~ 2 aT~ . ~ _~_ _ _  -- ~ O ' r r  , H z ~ - - ,  

r r r r 

~) at i 2---~(M, ~) at 
i /-2-a [~(M, ,, + ~, + 

{ [ ~)at] at 
a fl~ (M, "~, + ctg ~ (M, "~, ~) + 

at " }~ \  O [~x (M, "~, ~) d~ = c~ (M) "l - -  w,, + sin-2 q~ ~ a ,  ] J /  (6) 

1350 



Ar 0 • - - [ 2 • t  (M) e,.~ + ~, (M) e - -  ~ (M) e] -k 2A~ . ~ 0  [~ (M) e~] + 

o 
+ 2A,  -zT-, [P (M) e~,~] = p (M) u - -  H~ (r~% uvw), 

where 

1 1 
A = I ,  A ~=  , A , - -  

r r sin cp 

f 

H~ = 1 [3%, --+- (%w - -  %~) cig q~], 
r 

H e =  1 ( 3 % , + 2 c r ~ c t g ~ ) ,  p(M)---- E(M) 
r 2 [(1 + ~ (M)] 

and the remaining notation is given in [4]. 

Continuous quantities are in the square brackets in the equations presented here~ For 
bodies with a continuous inhomogeneity they should be differentiated as continuous functions. 
For a piecewise-homogeneous body, ioe., a body consisting of separate parts with different 
but constant physicomechanical characteristics within the limits of each of them, one of the 
factors in the products in the square brackets of the equations presented above is a piece- 
wise-constant function while the other is piecewise-continuous. These functions have common 
points" of discontinuity of the first kind. Differentiation of the product of such functions 
is realized according to the rule 

( ~ ) ' =  ~ ' + ~ ' ~ - T l ~ ] [ ~ ] 8 •  , (7) 

where [~], [~] are jumps in the functions ~ and ~ at the common point of discontinuity of 
the first kind z = zl, 6• = dS• 

If the function f(z) is such that the unilateral limits f(z I iO), f'(z I • ..... f(n) 
(z I • (b < z I < d) exist, then the following relationships hold [4]: 

f (z) 8• (z - -  z~) = f (z~ +_ 0) 8~ (z - -  z~), ( 8 ) 

f (z) 8~ ( z - -  z~) = f (~  + 0) 6~ ( z - -  z~) - -  f '  (z, + 0) 6• (z - -  z~) ( 9 )  

S e t t i n g  f ( z )  = S•  - z z )  in  t h e  r e l a t i o n s h i p s  (8 )  and ( 9 ) ,  we o b t a i n  

S~ (z --z~) 8~ (z --z~) = t ~+(z 0,-- z~), 

s~  (z - z~) 81 (z - a) = f~ 8.: 
(z Z1), 

- ( O .  

(1o) 

If the physicomechanical characteristics of a multilayered body as a single whole are 
represented in the form 

m--I 

p (z) = pl + ~ (p~+~ - m3 S~ (z - -  z~), 

t h e n  any o f  t h e  c o m b i n a t i o n s  i s  a l s o  r e p r e s e n t e d  in  t h e  same form.  Here  Pk a r e  t h e  p h v s i c o -  
mechanical characteristics of the k-th element of the packet, which are constant with:_n 
the limits of the domain occupied by each element separately; m is the quantity of eler~ents 
in the packet, and z k is the coordinate of the plane conjugate to the k-th and (k + l)--th 
element of the packet. 

Then taking account of the rule for differentiating (7) and (i0), we arrive at the fol- 
lowing heat conduction equation with discontinuous and singular coefficients for the classi- 
cal problem of a multilayered isotropic body, say: 
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where 

m--I 

m (~,& 

+ %+i  - -  8~) e - -  ((~)i--~l - -  (~)~-~) w~l S_ (z - -  zh) + 

+ ( 1  ( ~ t ) ~ + l ) a t  8_(z - -  zh)} 
(2~)~ Oz ~=~,~+o 

(ii) 

(;h). (c,)h 

For e i = 0 (i = I, 2 .... , m) Eq. (ii) is used in [8, 9] to study the temperature fields 
in piecewise-homogeneous isotropic bodies heated by heat sources or the external medium. 
A heat-conduction equation with discontinuous and singular coefficients is written in [i0] 
for a piecewise-homogeneous orthotropic body, a method is proposed to determine the temper- 
ature fields in adjoined diverse orthotropic rectangular wedges for a discontinuous boundary 
condition of the first kind. 

The purpose of [ii] is to give a theoretical foundation to the scheme utilized earlier 
[4] for obtaining heat conduction and thermoelasticity equations of piecewise-homogeneous 
bodies with discontinuous and singular coefficients. 

The temperature stresses in a cylindrical shell and plate-strip with piecewise-constant 
heat-elimination coefficients from the side surfaces are studied in [12, 13]. The papers 
[14, 18] are devoted to an investigation of the quasistationary temperature fields and the 
temperature stresses they cause in homogeneous and piecewise-homogeneous semiinfinite domains 
for boundary conditions of the third kind with discontinuous coefficients of heat elimination 
from the boundary surface. 

Investigation of the temperature fields and stresses in multistage thin-walled structure 
elements is of important practical value. In particular, such problems occur in the study 
of technological welding processes of plates and shells of different thickness and rods of 
different diameters; the thermal strength of metal-glass junctures of the stems of electro- 
vacuum instrument shells containing metal cylindrical step current leads; in the investiga- 
tion and analysis of measurement errors by low-temperature resistance thermometers because 
of the heat influx along the current leads and the protective armature. Differential equa- 
tions with coefficients of the impulsive heat conduction function are derived in [2, 4, 19- 
21] for isotropic thin plates, cylindrical shells, and rods with heat elimination and heat 
sources taken into account, and the quasistatic problem of thermoelasticity for circular and 
rectangular plates. A nonlinear heat-conduction problem is considered in [22] for multi- 
stage thin-walled structure elements heated by radiation. Differential equations with sin- 
gular coefficients are obtained to determine the integral characteristics of the Kirchhoff 
variable. On the basis of the equations deduced, single closed solutions are obtained for 
the whole domain of definition for nonstationary and stationary problems of heat conduction, 
quasistatic and static thermoelasticity problems of multistage circular plates, and two- 
stage semiinfinite platelets. 

The study of the temperature stresses in multistage thin-walled elements on the basis 
of the spatial heat conduction and thermoelasticity problem equations is of considerable in- 
terest. 

The method of continuation of functions is effective in the solution of heat conduction 
and thermoeiasticity problems for such bodies as well as bodies with cutouts of finite size. 
It is used in [23-29] to determine the temperature fields and stresses in plates with square, 
rectangular, or a system of rectangular cutouts, and the temperature stresses in a half- 
strip. 

A thin foreign layer is formed during the treatment of metal details by concentrated 
energy fluxes [30, 31]. The model of a body bonded by thin layers of thickness 2d [4] can 
be used in determining the temperature stresses in such structure elements. Let us intro- 
duce the reduced heat conduction A 0 = 2(Xt)0d, the density R 0 = 2p0d, and the shear stiff- 
ness go = 2G0d. Since the layer thickness is considerably less than their intervening dis- 
tance, we perform a passage to the limit as d + 0 in (2) and (3) for an isotropic body and 
retain X 0, R 0, go constant. We consequently obtain the following equations of the generalized 
problem: 
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1" t l Z  1 

[ f~,t.~ 4- & ~ '  (Mo - -  #~M~)(t ,)* 6 (x~ - -  z~)[,, dE : - - ~ ,  + 
�9 ~ ' 

0 h = - i  

+ %i + to~/e 4- %" lt0g0 (Lo - -  K~ L~) e* 4- Ro (Co - -  KoCh) }*l 6 (xa -- zh), 
h = [  

e ,  i t l  i 
Aul 4- - LlO,, 

1 - -  2 %  c~ 

m . .  

---~l(&~,~ ~ * +B*~2.~ . . . .  A f  ~ ff)5(x~ z ~ ) + & ~ ' ( x ~  z~,)],i 1, 2, 3, 
h ~ l  

(12)  

where 
L, = 2  1 + %  (~t),, ( n = 0 ;  1); K c =  .~1 ; 

1 - -  2 %  t0 
I 

M.--------~Q" " 5(~)--  dS(~) . e*=--* [e(zl, 4-O) 4-e(zh--O)l; 
(~.~)~ d~ 2 

~ .  a ( g o ) ~  . A~ ~ 2---~ ( 1 - & ) ,  B .=~ ,o  ~,j, 
01 

.4(go,~ gn [2 ( % . vl ' BU . = , ' :c  < u + ~ . . '  1 - - 2 %  - - K ~  I -2" , , ,  } e -  

---(Lo--KoL~)O ; ct - - ;  J Pl 

P0, Pl a r e  c h a r a c t e r i s t i c s  o f  t h e  i n c l u s i o n s  and o f  t h e  h o s t  m a t e r i a l ,  z k i s  t h e  c o o r d i n a t e  
o f  the '  m i d d l e  p l a n e  o f  t h e  k - t h  l a y e r ,  and m i s  t h e  q u a n t i t y  o f  f o r e i g n  l a y e r s .  

If the solutions of (12) are found for given boundary conditions, then we determine the 
temperature stresses from known formulas [4] in which the physicomechanical characteristics 
are represented in the form 

p (z) = p~ + (po - -  p~) S [ S  (.v~ - -  z~ 4- d) - -  S+ (x~ - -  zh - -  ~)1. 
h = l  

Limits of applicability of the model under consideration are established in a specific exam- 
ple in [32]. The temperature field in a piecewise-homogeneous half-plane is studied ia [33] 
for a partial nonideal contact (sealed crack, for instance). 

Since curves of the temperature dependence of the body characteristics can be appr)xi- 
mated by using asymmetric unit temperature functions [34] this permits application of :he 
apparatus of generalized function to the solution of thermoelasticity problems of thermally 
sensitive bodies. Such an approach affords the possibility of expressing the temperat~ire 
in terms of the Kirchhoff variable in nonlinear heat-conduction problems [35]. By sucil an 
approximation of the temperature dependence of the shear modulus and the substitution of the 
expression obtained in the equilibrium equation in displacements, the quasistatic therno- 
elasticity problem is reduced to the solution of a differential equation with singular coef- 
ficients of a complex argument [34, 36]. The effectiveness is shown of applying this meth- 
od to studying temperature stresses in thermally sensitive bodies. A method is propos~d 
in [37] for determining the nonstationary temperature fields in piecewise-inhomogeneous 
thermally sensitive bodies. The nonlinear equation of generalized heat conduction of an 
anisotropic body is obtained in [38]. The thermophysical characteristics for crystall ne 
bodies are proportional to the cube of the absolute temperature at temperatures below the 
Debye temperature, say. In this case the nonlinear heat-conduction problem for piecew:se- 
homogeneous bodies heated by radiation is linearized completely by using the Kirchhoff vari- 
able [38, 39], and the generalized functions apparatus is applicable for its solution. More- 
over, (2) is here written differently. 

The generalized thermoelasticity problem for bodies of a three-dimensional piecewise- 
homogeneous structure is examined in [40]. 

Nondestructive control methods of determining the thermophysical characteristics of ma- 
terials, based on the solutions of two-dimensional nonstationary heat-conduction problems 

1353 



for bodies with discontinuous boundary conditions of the second kind, have been developed 
by the school of A. G. Shashkov [41, 42]. Consequently, solutions of two-dimensional heat- 
conduction problems for homogeneous, piecewise-homogeneous, isotropic, and anisotropic 
bodies under different boundary conditions [i, 39, 9, i0, 43] are of practical value. 

NOTATION 

%ijt(M), ~t(M), heat-conduction coefficients of an inhomogeneous anisotropic and iso- 
tropic body; ~ijt(M), ~t(M), their temperature coefficients of linear expansion; cv(M), bulk 
specific heat; wt, heat source density; eij , strain tensor components; p(M), density; Cijks , 
components of the elastic stiffness tensor of a n anisotropic body; %(M), ~(M), Lam~ charac- 

[1, ~>o, 
t e r i s t i c s ;  e ,  volume e x p a n s i o n ;  S_+(5) = /0,5~0,5, ~=0 , a symmet r i c  u n i t  f u n c t i o n s ;  S(r  = 

I.o, ~<o  

5 ~--0 , symmet r ic  u n i t  f u n c t i o n s ;  E(M), e l a s t i c  modulus ;  "0(M), P o i s s o n  r a t i o ;  C~s, c o e f f i -  

cient of heat elimination from the body boundary surface S; t~, temperature of the external 
medium surrounding this surface; ni, vector components of the external normal ~ to the sur- 
face S; Inl = i; A, Laplace operator. 
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PROCESSES OF HEAT, .MASS, AND MOMENTUM TRANSFER 

IN DISPERSE MEDIA 

N. I. Syromyatnikov* and G. P. Yasnikov UDC 536.24:532.5 

The first new-concept technological plants to utilize disperse media for intensification 
of the processes of annealing of zinc concentrates, drying of fine-grained materials, and 
the combustion of solid fuel in fluidized beds and vibrating fluidized beds were developed 
on the basis of experimental studies without any incisive theoretical research efforts. This 
meant that theoretical investigations in the given field were dictated by practice~ 

However, such a rift between theory and practice quickly led to miscalculations and 
errors in the development of certain technologies (rapid heating and combustion of fine- 
grained fuel), which could only have adverse implications for the overall development of the 
problem. 

With these considerations in mind, a research program has been undertaken recently at the 
Department of Theoretical Heat Engineering of the Ural Polytechnic institute with a view to- 
ward the development of theoretical methods for analyzing the behavior of the indicated 
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